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K Theory of categories

C is an (8-)category.

C iso is an (8-)groupoid (space).

Example 1

C � Fin, C iso � Finiso �
²

n BΣn

C iso inherits extra structure from C.

Example 2

If C` is symmetric monoidal, C iso inherits E8-space structure.

Example 3²
n BΣn inherits two E8-space structures from >,�.
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K Theory of categories

An E8-space X is grouplike if the commutative monoid π0pX q is
an abelian group.

Theorem 4

Ω8 : Sp Ñ E8Top determines an equivalence

E8Topgp � Sp¥0.

K pC`q �‘group completion’ of the E8-space C iso (a spectrum).
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Examples

Example 5

Perfect modules over a ring spectrum: C` � Modperf,`
R

K pC`q � K pRq (definition of higher algebraic K-theory)

Example 6

Finite sets: C` � Fin>

K pC`q � S (Barratt-Priddy-Quillen theorem)
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Ring structure

In each case, C` is a ‘commutative semiring (8-)category’:

C has a second symmetric monoidal operation b;

b distributes over `.

K pC`q should inherit the structure of an E8-ring spectrum.

Obstacles to making this precise:

1 What is a ‘semiring (8-)category’?

2 What is ‘group completion’?
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Ring structure

Obstacles to making this precise:

1 What is a ‘semiring (8-)category’?

2 What is ‘group completion’?

Traditional answers (70’s):

1 bipermutative categories

2 Quillen Q construction, Waldhausen S construction

Alternative: categorify ordinary semirings and group completion!
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Semirings and group completion

1 Given abelian groups (commutative monoids) A,B, there is an
abelian group (commutative monoid) Ab B.

2 Abb (ComMonb) is a symmetric monoidal category.

3 Monoids in Abb (ComMonb) are rings (semirings).

4 Z (N) is the free abelian group (commutative monoid) on one
generator.

5 A commutative monoid is an abelian group if and only if it is
a Z-module.

6 ZbN � is group completion.
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Semiring categories

(Gepner-Groth-Nikolaus)

1 Given symmetric monoidal 8-categories C,D, there is a
symmetric monoidal 8-category C bD.

2 SymMonb8 is a (large) symmetric monoidal 8-category.

3 (Definition) Monoids in SymMonb8 are semiring 8-categories.

4 Finiso is the free symmetric monoidal 8-category on one
generator.

Proofs are formal, using higher algebra of presentable 8-categories.
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Semiring categories

Examples of commutative semiring 8-categories:

closed monoidal categories (Set, Top, Vect, SetG )

categories built via some constructions (Setop, Setiso)

connective commutative ring spectra (S, KU, HR)
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Group completion

There is a full subcategory inclusion Sp¥0 � SymMon8.

Theorem 7 (B.)

Sp¥0 � ModS (i.e., C` is an S-module iff it is a spectrum).

Sb C` � K pC`q if C is a groupoid.

HompS, C`q � PicpC`q.

If C`,b not a groupoid but semiadditive (ModR),

K pC`q � Sb Fun`,bpBurnrCobfr
1 s, Cq.
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Cartesian monoidal categories

C` a symmetric monoidal category, or C`,b a semiring category.

Definition 8

C is cartesian monoidal if ` � �.

C is cocartesian monoidal if ` � >.

C is semiadditive if ` � � � >.

Example 9

Set is cocartesian monoidal.

Setop is cartesian monoidal.

Ab (or ComMon) is semiadditive.
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Cartesian monoidal categories

Theorem 10 (B.)

ModFin � CocartMonCat (C` is a Fin-module iff ` � >)

ModFinop � CartMonCat

ModFinbFinop � SemiaddCat

Results are true for categories or 8-categories.
Question: What is Finb Finop?

Theorem 11 (Glasman)

The Burnside category is the free semiadditive category on one
object.

Finb Finop � Burn
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Modules over semiring categories

Semiring 8-category R R-modules
S Spectra

Finiso Symmetric monoidal

Fin Cocartesian monoidal

Finop Cartesian monoidal

Fininj Symmetric monoidal with initial unit

Fininj,op Symmetric monoidal with terminal unit

Fin� Cocartesian monoidal with 0 � 1

Finop
� Cartesian monoidal with 0 � 1

Burn Semiadditive

Burngp Additive
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Algebraic theories

Definition 12

A PROP (PROduct and Permutation category) is a symmetric
monoidal category P` generated by one object under `.

Think: objects labeled by finite sets, ` � >.

Definition 13

A P`-algebra in Cb is a symmetric monoidal functor

AlgPpCbq � HompP`, Cbq.
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Algebraic theories

Example 14

Fin is the PROP for commutative monoids;

Finop is the PROP for cocommutative comonoids;

Burn � Finb Finop is the PROP for
commutative-cocommutative bimonoids;

Burngp is the PROP for Hopf algebras.

Subcategory of finitely generated free objects.

Definition 15

A Lawvere theory is a cartesian monoidal PROP L�. Algebras are
taken in Set� (1-categories) or Top� (8-categories):

AlgL � AlgLpTop�q � HompL�,Top�q.
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Lawvere theories

Example 16

Lawvere theory Set-algebras Top-algebras

Finop Set Top

Burn � SpanpFinq Ab Sp¥0

Poly � BispanpFinq ComRing ? (ComRingSp¥0)

Theorem 17 (B.)

A PROP is a cyclic Finiso-module.

A Lawvere theory is a cyclic Finop-module.

If P,P 1 are PROPs/Lawvere theories, so is P b P 1.

If P` is a PROP, the associated Lawvere theory is P`bFinop:

AlgPpTop�q � AlgPbFinoppTop�q.
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Application: equivariant homotopy theory

Definition 18 (B.)

An equivariant Lawvere theory is a cyclic Finop
G -module L�.

AlgL � HompL�,Top�q.

Theorem 19 (Elmendorf)

Finop
G is the equivariant Lawvere theory for TopG .

Theorem 20 (Guillou-May)

BurnG � SpanpFinG q is the equivariant Lawvere theory for Sp¥0
G .

Conjecture

PolyG � BispanpFinG q is the equivariant Lawvere theory for
CRingSp¥0

G .
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Application: operads

Operad O:

given a finite set X , set OpX q of ways to multiply objects of X

composition maps

associative

Example 21

Commutative operad CommpX q � �.
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Application: operads

Symmetric monoidal category EnvpOq>:

Objects are finite sets.

Morphism X Ñ Y is a way to turn X into Y using operations
in O.

Symmetric monoidal operation is >.

EnvpOq> is a PROP; algebras are O-algebras

HompEnvpOq>, Cbq � AlgOpCbq.

Example 22

EnvpCommq> � Fin>.
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Applications: operads

�
Operads

O



Ñ

�
PROPs

EnvpOq



Ñ

�
Lawvere Theories

EnvpOq b Finop




Theorem 23

Given an operad O, EnvpOq b Finop is:

the Lawvere theory associated to O;

the PROP for O � Comm�bialgebras;

an explicit span construction.

Conjecture

The PROP for O �O1�bialgebras can be computed via a span
construction.
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Future work

Push/pull square of rings:

Finiso //

��

Fin

��
Finop // Burn

Descent: Can Cb P SymMon8 be reconstructed from C b Fin and
C b Finop?
Answer: Not always!

Example 24

Sb Fin � Sb Finop � 0, but S � 0.
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Future work

Example 25

Can operad O be recovered from EnvpOq b Fin and
EnvpOq b Finop?

EnvpOq b Finop � LO (Lawvere theory)

EnvpOq b Fin � Fin

LO b Burn � Burn

Conjecture

There is an equivalence of (8-)categories between unital
(8-)operads and cyclic Finop-modules with trivialization over Burn.

Applications:

earlier conjecture on operadic bialgebras

equivariant 8-operads
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