Commutative Algebra of Categories

John D. Berman

University of Virginia

September 22, 2017

John D. Berman Commutative Algebra of Categories

 ${\mathcal C}$ is an (∞ -)category.

æ

 $\mathcal C$ is an $(\infty$ -)category. $\mathcal C^{\text{iso}}$ is an $(\infty$ -)groupoid (space).

```
C is an (\infty-)category.
C^{iso} is an (\infty-)groupoid (space).
```

Example 1

 $\mathcal{C} = \mathsf{Fin}, \ \mathcal{C}^{\mathsf{iso}} = \mathsf{Fin}^{\mathsf{iso}} \cong \coprod_n B\Sigma_n$

▶ ∢ ≣ ▶

```
\mathcal C is an (\infty-)category.
\mathcal C^{\text{iso}} is an (\infty-)groupoid (space).
```

Example 1	
$\mathcal{C} = Fin, \ \mathcal{C}^{iso} = Fin^{iso} \cong \coprod_n B\Sigma_n$	

 \mathcal{C}^{iso} inherits extra structure from $\mathcal{C}.$

```
\mathcal C is an (\infty-)category.
\mathcal C^{\text{iso}} is an (\infty-)groupoid (space).
```

Example 1

$$\mathcal{C} = \mathsf{Fin}, \ \mathcal{C}^{\mathsf{iso}} = \mathsf{Fin}^{\mathsf{iso}} \cong \coprod_n B\Sigma_n$$

 \mathcal{C}^{iso} inherits extra structure from $\mathcal{C}.$

Example 2

If \mathcal{C}^\oplus is symmetric monoidal, \mathcal{C}^{iso} inherits $\mathbb{E}_\infty\text{-space}$ structure.

```
\mathcal{C} is an (\infty-)category.
\mathcal{C}^{iso} is an (\infty-)groupoid (space).
```

Example 1

 $\mathcal{C} = \operatorname{Fin}, \, \mathcal{C}^{\operatorname{iso}} = \operatorname{Fin}^{\operatorname{iso}} \cong \coprod_n B\Sigma_n$

 \mathcal{C}^{iso} inherits extra structure from \mathcal{C} .

Example 2

If \mathcal{C}^\oplus is symmetric monoidal, \mathcal{C}^{iso} inherits $\mathbb{E}_\infty\text{-space}$ structure.

Example 3

 $\coprod_n B\Sigma_n$ inherits *two* \mathbb{E}_{∞} -space structures from \amalg, \times .

An \mathbb{E}_{∞} -space X is *grouplike* if the commutative monoid $\pi_0(X)$ is an abelian group.

An \mathbb{E}_{∞} -space X is grouplike if the commutative monoid $\pi_0(X)$ is an abelian group.

Theorem 4 $\Omega^{\infty} : Sp \to \mathbb{E}_{\infty}$ Top determines an equivalence \mathbb{E}_{∞} Top_{gp} \cong Sp^{≥ 0}. An \mathbb{E}_{∞} -space X is *grouplike* if the commutative monoid $\pi_0(X)$ is an abelian group.

Theorem 4 $\Omega^{\infty} : Sp \to \mathbb{E}_{\infty}$ Top determines an equivalence \mathbb{E}_{∞} Top_{gp} \cong Sp^{≥ 0}.

 $\mathcal{K}(\mathcal{C}^{\oplus})$ ='group completion' of the \mathbb{E}_{∞} -space \mathcal{C}^{iso} (a spectrum).

Perfect modules over a ring spectrum: $\mathcal{C}^{\oplus} = \mathsf{Mod}_R^{\mathsf{perf},\oplus}$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Perfect modules over a ring spectrum: $C^{\oplus} = \text{Mod}_R^{\text{perf},\oplus}$ $K(C^{\oplus}) = K(R)$ (definition of higher algebraic K-theory)

< 同 > < 三 > < 三 > -

Perfect modules over a ring spectrum: $C^{\oplus} = \text{Mod}_R^{\text{perf},\oplus}$ $K(C^{\oplus}) = K(R)$ (definition of higher algebraic K-theory)

Example 6

Finite sets: $\mathcal{C}^{\oplus} = \mathsf{Fin}^{\amalg}$

くロ と く 同 と く ヨ と 一

э

Perfect modules over a ring spectrum: $C^{\oplus} = \text{Mod}_R^{\text{perf},\oplus}$ $K(C^{\oplus}) = K(R)$ (definition of higher algebraic K-theory)

Example 6

Finite sets: $C^{\oplus} = \operatorname{Fin}^{\square} \mathcal{K}(C^{\oplus}) \cong \mathbb{S}$ (Barratt-Priddy-Quillen theorem)

・ 同 ト ・ ヨ ト ・ ヨ ト

In each case, \mathcal{C}^\oplus is a 'commutative semiring ($\infty\text{-})\text{category}\text{'}\text{:}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- In each case, \mathcal{C}^{\oplus} is a 'commutative semiring (∞ -)category':
 - \mathcal{C} has a second symmetric monoidal operation \otimes ;

→ < ∃ →</p>

- \mathcal{C} has a second symmetric monoidal operation \otimes ;
- \otimes distributes over \oplus .

- ₹ 🖬 🕨

- $\mathcal C$ has a second symmetric monoidal operation \otimes ;
- \otimes distributes over \oplus .

 $\mathcal{K}(\mathcal{C}^{\oplus})$ should inherit the structure of an \mathbb{E}_{∞} -ring spectrum.

- $\mathcal C$ has a second symmetric monoidal operation \otimes ;
- \otimes distributes over \oplus .

 $\mathcal{K}(\mathcal{C}^{\oplus})$ should inherit the structure of an \mathbb{E}_{∞} -ring spectrum.

Obstacles to making this precise:

- $\mathcal C$ has a second symmetric monoidal operation \otimes ;
- \otimes distributes over \oplus .

 $\mathcal{K}(\mathcal{C}^{\oplus})$ should inherit the structure of an \mathbb{E}_{∞} -ring spectrum.

Obstacles to making this precise:

• What is a 'semiring (∞ -)category'?

- $\mathcal C$ has a second symmetric monoidal operation \otimes ;
- $\bullet \ \otimes \ {\sf distributes} \ {\sf over} \ \oplus.$

 $\mathcal{K}(\mathcal{C}^{\oplus})$ should inherit the structure of an \mathbb{E}_{∞} -ring spectrum.

Obstacles to making this precise:

- What is a 'semiring (∞ -)category'?
- What is 'group completion'?

- What is a 'semiring $(\infty$ -)category'?
- What is 'group completion'?

Traditional answers (70's):

- What is a 'semiring (∞ -)category'?
- What is 'group completion'?

Traditional answers (70's):

bipermutative categories

- What is a 'semiring (∞ -)category'?
- What is 'group completion'?

Traditional answers (70's):

- bipermutative categories
- @ Quillen Q construction, Waldhausen S. construction

- What is a 'semiring (∞ -)category'?
- What is 'group completion'?

Traditional answers (70's):

- bipermutative categories
- @ Quillen Q construction, Waldhausen S. construction

Alternative: categorify ordinary semirings and group completion!

• Given abelian groups (commutative monoids) A, B, there is an abelian group (commutative monoid) $A \otimes B$.

- Given abelian groups (commutative monoids) A, B, there is an abelian group (commutative monoid) $A \otimes B$.
- **2** Ab $^{\otimes}$ (ComMon $^{\otimes}$) is a symmetric monoidal category.

- Given abelian groups (commutative monoids) A, B, there is an abelian group (commutative monoid) $A \otimes B$.
- **2** Ab $^{\otimes}$ (ComMon $^{\otimes}$) is a symmetric monoidal category.
- Solution Monoids in Ab^{\otimes} (ComMon^{\otimes}) are rings (semirings).

- Given abelian groups (commutative monoids) A, B, there is an abelian group (commutative monoid) $A \otimes B$.
- **2** Ab^{\otimes} (ComMon^{\otimes}) is a symmetric monoidal category.
- Solution Monoids in Ab^{\otimes} (ComMon^{\otimes}) are rings (semirings).
- **③** \mathbb{Z} (\mathbb{N}) is the free abelian group (commutative monoid) on one generator.

- Given abelian groups (commutative monoids) A, B, there is an abelian group (commutative monoid) $A \otimes B$.
- **2** Ab^{\otimes} (ComMon^{\otimes}) is a symmetric monoidal category.
- Solution Monoids in Ab^{\otimes} (ComMon^{\otimes}) are rings (semirings).
- **③** \mathbb{Z} (\mathbb{N}) is the free abelian group (commutative monoid) on one generator.
- A commutative monoid is an abelian group if and only if it is a Z-module.

- Given abelian groups (commutative monoids) A, B, there is an abelian group (commutative monoid) $A \otimes B$.
- **2** Ab^{\otimes} (ComMon^{\otimes}) is a symmetric monoidal category.
- Solution Monoids in Ab^{\otimes} (ComMon^{\otimes}) are rings (semirings).
- **③** \mathbb{Z} (\mathbb{N}) is the free abelian group (commutative monoid) on one generator.
- A commutative monoid is an abelian group if and only if it is a Z-module.
- **(**) $\mathbb{Z} \otimes_{\mathbb{N}} -$ is group completion.

Given symmetric monoidal ∞-categories C, D, there is a symmetric monoidal ∞-category C ⊗ D.

→ < ∃ →</p>

- Given symmetric monoidal ∞-categories C, D, there is a symmetric monoidal ∞-category C ⊗ D.
- **2** SymMon $_{\infty}^{\otimes}$ is a (large) symmetric monoidal ∞ -category.

- Given symmetric monoidal ∞-categories C, D, there is a symmetric monoidal ∞-category C ⊗ D.
- **2** SymMon $_{\infty}^{\otimes}$ is a (large) symmetric monoidal ∞ -category.
- (Definition) Monoids in SymMon $_{\infty}^{\otimes}$ are semiring ∞ -categories.

- Given symmetric monoidal ∞-categories C, D, there is a symmetric monoidal ∞-category C ⊗ D.
- **2** SymMon $_{\infty}^{\otimes}$ is a (large) symmetric monoidal ∞ -category.
- (Definition) Monoids in SymMon $_{\infty}^{\otimes}$ are semiring ∞ -categories.
- Is the free symmetric monoidal ∞-category on one generator.

- Given symmetric monoidal ∞-categories C, D, there is a symmetric monoidal ∞-category C ⊗ D.
- **2** SymMon $_{\infty}^{\otimes}$ is a (large) symmetric monoidal ∞ -category.
- (Definition) Monoids in SymMon $_{\infty}^{\otimes}$ are semiring ∞ -categories.
- Is the free symmetric monoidal ∞-category on one generator.

Proofs are formal, using higher algebra of presentable ∞ -categories.
-∢ ≣ ▶

• closed monoidal categories (Set, Top, Vect, Set_G)

- closed monoidal categories (Set, Top, Vect, Set_G)
- categories built via some constructions (Set^{op}, Set^{iso})

- closed monoidal categories (Set, Top, Vect, Set_G)
- categories built via some constructions (Set^{op}, Set^{iso})
- connective commutative ring spectra (S, KU, HR)

Theorem 7 (B.)

• $Sp^{\geq 0} \cong Mod_{\mathbb{S}}$ (i.e., \mathcal{C}^{\oplus} is an \mathbb{S} -module iff it is a spectrum).

→ < Ξ → <</p>

Theorem 7 (B.)

- $Sp^{\geq 0} \cong Mod_{\mathbb{S}}$ (i.e., \mathcal{C}^{\oplus} is an \mathbb{S} -module iff it is a spectrum).
- $\mathbb{S} \otimes \mathcal{C}^{\oplus} \cong K(\mathcal{C}^{\oplus})$ if \mathcal{C} is a groupoid.

Theorem 7 (B.)

- $Sp^{\geq 0} \cong Mod_{\mathbb{S}}$ (i.e., \mathcal{C}^{\oplus} is an \mathbb{S} -module iff it is a spectrum).
- $\mathbb{S} \otimes \mathcal{C}^{\oplus} \cong K(\mathcal{C}^{\oplus})$ if \mathcal{C} is a groupoid.
- $Hom(\mathbb{S}, \mathcal{C}^{\oplus}) \cong Pic(\mathcal{C}^{\oplus}).$

Theorem 7 (B.)

- $Sp^{\geq 0} \cong Mod_{\mathbb{S}}$ (i.e., \mathcal{C}^{\oplus} is an \mathbb{S} -module iff it is a spectrum).
- $\mathbb{S} \otimes \mathcal{C}^{\oplus} \cong K(\mathcal{C}^{\oplus})$ if \mathcal{C} is a groupoid.
- $Hom(\mathbb{S}, \mathcal{C}^{\oplus}) \cong Pic(\mathcal{C}^{\oplus}).$

If $\mathcal{C}^{\oplus,\otimes}$ not a groupoid but semiadditive (Mod_R),

$$\mathcal{K}(\mathcal{C}^{\oplus})\cong \mathbb{S}\otimes \mathsf{Fun}^{\oplus,\otimes}(\mathsf{Burn}[\mathsf{Cob}_1^{\mathsf{fr}}],\mathcal{C}).$$

Definition 8

• \mathcal{C} is cartesian monoidal if $\oplus = \times$.

Definition 8

- C is cartesian monoidal if $\oplus = \times$.
- \mathcal{C} is cocartesian monoidal if $\oplus = \amalg$.

Definition 8

- C is cartesian monoidal if $\oplus = \times$.
- \mathcal{C} is cocartesian monoidal if $\oplus = \amalg$.
- \mathcal{C} is semiadditive if $\bigoplus = \times = \amalg$.

Definition 8

- \mathcal{C} is cartesian monoidal if $\bigoplus = \times$.
- C is cocartesian monoidal if $\oplus = \amalg$.
- C is semiadditive if $\oplus = \times = \amalg$.

Example 9

• Set is cocartesian monoidal.

Definition 8

- C is cartesian monoidal if $\oplus = \times$.
- C is cocartesian monoidal if $\oplus = \amalg$.
- \mathcal{C} is semiadditive if $\bigoplus = \times = \amalg$.

- Set is cocartesian monoidal.
- Set^{op} is cartesian monoidal.

Definition 8

- C is cartesian monoidal if $\oplus = \times$.
- C is cocartesian monoidal if $\oplus = \amalg$.
- \mathcal{C} is semiadditive if $\bigoplus = \times = \amalg$.

- Set is cocartesian monoidal.
- Set^{op} is cartesian monoidal.
- Ab (or ComMon) is semiadditive.

• $Mod_{Fin} \cong CocartMonCat$ (C^{\oplus} is a Fin-module iff $\oplus = \amalg$)

John D. Berman Commutative Algebra of Categories

伺 ト イヨ ト イヨト

- $Mod_{Fin} \cong CocartMonCat (C^{\oplus} \text{ is a Fin-module iff } \oplus = \amalg)$
- Mod_{Fin^{op}} ≅ CartMonCat

• • = • • = •

- $Mod_{Fin} \cong CocartMonCat$ (C^{\oplus} is a Fin-module iff $\oplus = \amalg$)
- Mod_{Fin^{op}} ≃ CartMonCat
- $Mod_{Fin\otimes Fin^{op}} \cong SemiaddCat$

• • = • • = •

- $Mod_{Fin} \cong CocartMonCat (C^{\oplus} \text{ is a Fin-module iff } \oplus = \amalg)$
- Mod_{Fin^{op}} ≅ CartMonCat
- Mod_{Fin⊗Fin^{op}} ≅ SemiaddCat

Results are true for categories or ∞ -categories.

- $Mod_{Fin} \cong CocartMonCat (C^{\oplus} \text{ is a Fin-module iff } \oplus = \amalg)$
- Mod_{Fin^{op}} ≃ CartMonCat
- Mod_{Fin⊗Fin^{op}} ≅ SemiaddCat

Results are true for categories or ∞ -categories. **Question**: What is Fin \otimes Fin^{op}?

- $Mod_{Fin} \cong CocartMonCat (C^{\oplus} \text{ is a Fin-module iff } \oplus = \amalg)$
- Mod_{Fin^{op}} ≃ CartMonCat
- Mod_{Fin⊗Fin^{op}} ≃ SemiaddCat

Results are true for categories or ∞ -categories. **Question**: What is Fin \otimes Fin^{op}?

Theorem 11 (Glasman)

The Burnside category is the free semiadditive category on one object.

- $Mod_{Fin} \cong CocartMonCat (C^{\oplus} \text{ is a Fin-module iff } \oplus = \amalg)$
- Mod_{Fin^{op}} ≃ CartMonCat
- Mod_{Fin⊗Fin^{op}} ≃ SemiaddCat

Results are true for categories or ∞ -categories. **Question**: What is Fin \otimes Fin^{op}?

Theorem 11 (Glasman)

The Burnside category is the free semiadditive category on one object.

 $\mathsf{Fin}\otimes\mathsf{Fin}^{\mathsf{op}}\cong\mathsf{Burn}$

Semiring ∞ -category $\mathcal R$	$\mathcal{R} ext{-modules}$	
S	Spectra	
Fin ^{iso}	Symmetric monoidal	
Fin	Cocartesian monoidal	
Fin ^{op}	Cartesian monoidal	
Fin ^{inj}	Symmetric monoidal with initial unit	
Fin ^{inj,op}	Symmetric monoidal with terminal unit	
Fin _*	Cocartesian monoidal with $0 = 1$	
Fin ^{op}	Cartesian monoidal with $0 = 1$	
Burn	Semiadditive	
Burn _{gp}	Additive	

æ

Definition 12

A *PROP* (PROduct and Permutation category) is a symmetric monoidal category \mathcal{P}^{\oplus} generated by one object under \oplus .

Definition 12

A *PROP* (PROduct and Permutation category) is a symmetric monoidal category \mathcal{P}^{\oplus} generated by one object under \oplus .

Think: objects labeled by finite sets, $\oplus = \amalg$.

Definition 12

A *PROP* (PROduct and Permutation category) is a symmetric monoidal category \mathcal{P}^{\oplus} generated by one object under \oplus .

Think: objects labeled by finite sets, $\oplus = \amalg$.

Definition 13

A \mathcal{P}^\oplus -algebra in \mathcal{C}^\otimes is a symmetric monoidal functor

$$\mathsf{Alg}_{\mathcal{P}}(\mathcal{C}^{\otimes}) = \mathsf{Hom}(\mathcal{P}^{\oplus}, \mathcal{C}^{\otimes}).$$

Example 14

• Fin is the PROP for commutative monoids;

æ

.⊒ . ►

▲ 同 ▶ → 三 ▶

- Fin is the PROP for commutative monoids;
- Fin^{op} is the PROP for cocommutative comonoids;

- Fin is the PROP for commutative monoids;
- Fin^{op} is the PROP for cocommutative comonoids;
- Burn ≅ Fin ⊗ Fin^{op} is the PROP for commutative-cocommutative bimonoids;

- Fin is the PROP for commutative monoids;
- Fin^{op} is the PROP for cocommutative comonoids;
- Burn ≅ Fin ⊗ Fin^{op} is the PROP for commutative-cocommutative bimonoids;
- Burn_{gp} is the PROP for Hopf algebras.

Example 14

- Fin is the PROP for commutative monoids;
- Fin^{op} is the PROP for cocommutative comonoids;
- Burn ≅ Fin ⊗ Fin^{op} is the PROP for commutative-cocommutative bimonoids;
- Burn_{gp} is the PROP for Hopf algebras.

If \mathcal{P}^{\oplus} is cartesian monoidal, $\mathcal{P}^{\mathsf{op}} \subseteq \mathsf{Alg}_{\mathcal{P}}(\mathsf{Set}^{\times})$:

Example 14

- Fin is the PROP for commutative monoids;
- Fin^{op} is the PROP for cocommutative comonoids;
- Burn ≅ Fin ⊗ Fin^{op} is the PROP for commutative-cocommutative bimonoids;
- Burn_{gp} is the PROP for Hopf algebras.

If \mathcal{P}^{\oplus} is cartesian monoidal, $\mathcal{P}^{\mathsf{op}} \subseteq \mathsf{Alg}_{\mathcal{P}}(\mathsf{Top}^{\times})$:

Example 14

- Fin is the PROP for commutative monoids;
- Fin^{op} is the PROP for cocommutative comonoids;
- Burn ≅ Fin ⊗ Fin^{op} is the PROP for commutative-cocommutative bimonoids;
- Burn_{gp} is the PROP for Hopf algebras.

If \mathcal{P}^{\oplus} is cartesian monoidal, $\mathcal{P}^{op} \subseteq Alg_{\mathcal{P}}(Top^{\times})$: Subcategory of finitely generated free objects.

Example 14

- Fin is the PROP for commutative monoids;
- Fin^{op} is the PROP for cocommutative comonoids;
- Burn ≅ Fin ⊗ Fin^{op} is the PROP for commutative-cocommutative bimonoids;
- Burn_{gp} is the PROP for Hopf algebras.

If \mathcal{P}^{\oplus} is cartesian monoidal, $\mathcal{P}^{op} \subseteq Alg_{\mathcal{P}}(Top^{\times})$: Subcategory of finitely generated free objects.

Definition 15

A *Lawvere theory* is a cartesian monoidal PROP \mathcal{L}^{\times} . Algebras are taken in Set[×] (1-categories) or Top[×] (∞ -categories):

$$\mathsf{Alg}_{\mathcal{L}} = \mathsf{Alg}_{\mathcal{L}}(\mathsf{Top}^{\times}) \cong \mathsf{Hom}(\mathcal{L}^{\times},\mathsf{Top}^{\times}).$$

ヘロト ヘヨト ヘヨト

		- 1	~
Evam	nlı	\sim 1	h
LAdill	UI	т т	.υ

Lawvere theory	Set-algebras	Top-algebras
Fin ^{op}	Set	Тор

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

æ
Lawvere theory	Set-algebras	Top-algebras
Fin ^{op}	Set	Тор
Burn = Span(Fin)	Ab	Sp ^{≥0}

æ

Lawvere theory	Set-algebras	Top-algebras
Fin ^{op}	Set	Тор
Burn = Span(Fin)	Ab	Sp ^{≽0}
Poly = Bispan(Fin)	ComRing	? (ComRingSp ^{≥0})

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

æ

Lawvere theory	Set-algebras	Top-algebras
Fin ^{op}	Set	Тор
Burn = Span(Fin)	Ab	Sp ^{≥0}
Poly = Bispan(Fin)	ComRing	? (ComRingSp ^{≥0})

Theorem 17 (B.)

• A PROP is a cyclic Fin^{iso}-module.

< D > < A > < B > < B >

æ

Lawvere theory	Set-algebras	Top-algebras
Fin ^{op}	Set	Тор
Burn = Span(Fin)	Ab	Sp ^{≥0}
Poly = Bispan(Fin)	ComRing	? (ComRingSp ^{≥0})

Theorem 17 (B.)

- A PROP is a cyclic Fin^{iso}-module.
- A Lawvere theory is a cyclic Fin^{op}-module.

▲ 同 ▶ ▲ 三

B> B

Lawvere theory	Set-algebras	Top-algebras
Fin ^{op}	Set	Тор
Burn = Span(Fin)	Ab	Sp ^{≥0}
Poly = Bispan(Fin)	ComRing	? (ComRingSp ^{≥0})

Theorem 17 (B.)

- A PROP is a cyclic Fin^{iso}-module.
- A Lawvere theory is a cyclic Fin^{op}-module.
- If $\mathcal{P}, \mathcal{P}'$ are PROPs/Lawvere theories, so is $\mathcal{P} \otimes \mathcal{P}'$.

Lawvere theory	Set-algebras	Top-algebras
Fin ^{op}	Set	Тор
Burn = Span(Fin)	Ab	Sp ^{≥0}
Poly = Bispan(Fin)	ComRing	? (ComRingSp ^{≥0})

Theorem 17 (B.)

- A PROP is a cyclic Fin^{iso}-module.
- A Lawvere theory is a cyclic Fin^{op}-module.
- If $\mathcal{P}, \mathcal{P}'$ are PROPs/Lawvere theories, so is $\mathcal{P}\otimes \mathcal{P}'$.
- If \mathcal{P}^{\oplus} is a PROP, the associated Lawvere theory is $\mathcal{P}^{\oplus} \otimes Fin^{op}$:

$$Alg_{\mathcal{P}}(\mathit{Top}^{\times}) \cong Alg_{\mathcal{P}\otimes\mathit{Fin}^{op}}(\mathit{Top}^{\times}).$$

An equivariant Lawvere theory is a cyclic $\operatorname{Fin}_{G}^{\operatorname{op}}$ -module \mathcal{L}^{\times} .

 $\mathsf{Alg}_{\mathcal{L}} = \mathsf{Hom}(\mathcal{L}^{\times},\mathsf{Top}^{\times}).$

伺 ト イヨ ト イヨ ト

An equivariant Lawvere theory is a cyclic $\operatorname{Fin}_{G}^{\operatorname{op}}$ -module \mathcal{L}^{\times} .

```
\mathsf{Alg}_{\mathcal{L}} = \mathsf{Hom}(\mathcal{L}^{\times}, \mathsf{Top}^{\times}).
```

Theorem 19 (Elmendorf)

 Fin_G^{op} is the equivariant Lawvere theory for Top_G .

伺 ト イヨト イヨト

An equivariant Lawvere theory is a cyclic $\operatorname{Fin}_{G}^{\operatorname{op}}$ -module \mathcal{L}^{\times} .

```
\mathsf{Alg}_{\mathcal{L}} = \mathsf{Hom}(\mathcal{L}^{\times},\mathsf{Top}^{\times}).
```

Theorem 19 (Elmendorf)

 Fin_G^{op} is the equivariant Lawvere theory for Top_G .

Theorem 20 (Guillou-May)

 $Burn_G = Span(Fin_G)$ is the equivariant Lawvere theory for $Sp_G^{\geq 0}$.

An equivariant Lawvere theory is a cyclic $\operatorname{Fin}_{G}^{\operatorname{op}}$ -module \mathcal{L}^{\times} .

$$\mathsf{Alg}_{\mathcal{L}} = \mathsf{Hom}(\mathcal{L}^{\times}, \mathsf{Top}^{\times}).$$

Theorem 19 (Elmendorf)

 Fin_G^{op} is the equivariant Lawvere theory for Top_G .

Theorem 20 (Guillou-May)

 $Burn_G = Span(Fin_G)$ is the equivariant Lawvere theory for $Sp_G^{\geq 0}$.

Conjecture

 $\mathsf{Poly}_G = \mathsf{Bispan}(\mathsf{Fin}_G)$ is the equivariant Lawvere theory for $\mathsf{CRing}\mathsf{Sp}_G^{\geq 0}.$

Operad \mathcal{O} :

• given a finite set X, set $\mathcal{O}(X)$ of ways to multiply objects of X

• • = • • = •

 $\mathsf{Operad}\ \mathcal{O}:$

- given a finite set X, set $\mathcal{O}(X)$ of ways to multiply objects of X
- composition maps

• • = • • = •

 $\mathsf{Operad}\ \mathcal{O}:$

- given a finite set X, set $\mathcal{O}(X)$ of ways to multiply objects of X
- composition maps
- associative

A B M A B M

$\mathsf{Operad}\ \mathcal{O}:$

- given a finite set X, set $\mathcal{O}(X)$ of ways to multiply objects of X
- composition maps
- associative

Example 21

Commutative operad Comm(X) = *.

A ≥ ►

Application: operads

Symmetric monoidal category $Env(\mathcal{O})^{II}$:

• Objects are finite sets.

伺 ト イヨト イヨト

э

Application: operads

Symmetric monoidal category $Env(\mathcal{O})^{\amalg}$:

- Objects are finite sets.
- Morphism X → Y is a way to turn X into Y using operations in O.

• • = • • = •

Application: operads

Symmetric monoidal category $Env(\mathcal{O})^{\amalg}$:

- Objects are finite sets.
- Morphism X → Y is a way to turn X into Y using operations in O.
- $\bullet\,$ Symmetric monoidal operation is $\amalg.$

Symmetric monoidal category $Env(\mathcal{O})^{II}$:

- Objects are finite sets.
- Morphism $X \to Y$ is a way to turn X into Y using operations in \mathcal{O} .
- Symmetric monoidal operation is II.

 $Env(\mathcal{O})^{II}$ is a PROP; algebras are \mathcal{O} -algebras

 $\mathsf{Hom}(\mathsf{Env}(\mathcal{O})^{\amalg},\mathcal{C}^{\otimes})\cong\mathsf{Alg}_{\mathcal{O}}(\mathcal{C}^{\otimes}).$

Symmetric monoidal category $Env(\mathcal{O})^{II}$:

- Objects are finite sets.
- Morphism $X \to Y$ is a way to turn X into Y using operations in \mathcal{O} .
- Symmetric monoidal operation is II.

 $Env(\mathcal{O})^{II}$ is a PROP; algebras are \mathcal{O} -algebras

$$\mathsf{Hom}(\mathsf{Env}(\mathcal{O})^{\amalg}, \mathcal{C}^{\otimes}) \cong \mathsf{Alg}_{\mathcal{O}}(\mathcal{C}^{\otimes}).$$

Example 22

 $Env(Comm)^{II} = Fin^{II}.$

$$\begin{pmatrix} \mathsf{Operads} \\ \mathcal{O} \end{pmatrix} \rightarrow \begin{pmatrix} \mathsf{PROPs} \\ \mathsf{Env}(\mathcal{O}) \end{pmatrix} \rightarrow \begin{pmatrix} \mathsf{Lawvere\ Theories} \\ \mathsf{Env}(\mathcal{O}) \otimes \mathsf{Fin}^{\mathsf{op}} \end{pmatrix}$$

æ

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

$$\begin{pmatrix} \mathsf{Operads} \\ \mathcal{O} \end{pmatrix} \to \begin{pmatrix} \mathsf{PROPs} \\ \mathsf{Env}(\mathcal{O}) \end{pmatrix} \to \begin{pmatrix} \mathsf{Lawvere\ Theories} \\ \mathsf{Env}(\mathcal{O}) \otimes \mathsf{Fin}^{\mathsf{op}} \end{pmatrix}$$

Given an operad \mathcal{O} , $Env(\mathcal{O}) \otimes Fin^{op}$ is:

• the Lawvere theory associated to \mathcal{O} ;

$$\begin{pmatrix} \mathsf{Operads} \\ \mathcal{O} \end{pmatrix} \to \begin{pmatrix} \mathsf{PROPs} \\ \mathsf{Env}(\mathcal{O}) \end{pmatrix} \to \begin{pmatrix} \mathsf{Lawvere\ Theories} \\ \mathsf{Env}(\mathcal{O}) \otimes \mathsf{Fin}^{\mathsf{op}} \end{pmatrix}$$

Given an operad \mathcal{O} , $Env(\mathcal{O}) \otimes Fin^{op}$ is:

- the Lawvere theory associated to \mathcal{O} ;
- the PROP for $\mathcal{O} Comm bialgebras;$

$$\begin{pmatrix} \mathsf{Operads} \\ \mathcal{O} \end{pmatrix} \to \begin{pmatrix} \mathsf{PROPs} \\ \mathsf{Env}(\mathcal{O}) \end{pmatrix} \to \begin{pmatrix} \mathsf{Lawvere\ Theories} \\ \mathsf{Env}(\mathcal{O}) \otimes \mathsf{Fin}^{\mathsf{op}} \end{pmatrix}$$

Given an operad \mathcal{O} , $Env(\mathcal{O}) \otimes Fin^{op}$ is:

- the Lawvere theory associated to \mathcal{O} ;
- the PROP for $\mathcal{O} Comm-bialgebras$;
- an explicit span construction.

$$\begin{pmatrix} \mathsf{Operads} \\ \mathcal{O} \end{pmatrix} \to \begin{pmatrix} \mathsf{PROPs} \\ \mathsf{Env}(\mathcal{O}) \end{pmatrix} \to \begin{pmatrix} \mathsf{Lawvere\ Theories} \\ \mathsf{Env}(\mathcal{O}) \otimes \mathsf{Fin}^{\mathsf{op}} \end{pmatrix}$$

Given an operad \mathcal{O} , $Env(\mathcal{O}) \otimes Fin^{op}$ is:

- the Lawvere theory associated to \mathcal{O} ;
- the PROP for O Comm bialgebras;
- an explicit span construction.

Conjecture

The PROP for $\mathcal{O}-\mathcal{O}'-\text{bialgebras}$ can be computed via a span construction.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Descent: Can $\mathcal{C}^{\otimes} \in SymMon_{\infty}$ be reconstructed from $\mathcal{C} \otimes Fin$ and $\mathcal{C} \otimes Fin^{op}$?

伺 と く き と く き と … き

Descent: Can $\mathcal{C}^{\otimes} \in \text{SymMon}_{\infty}$ be reconstructed from $\mathcal{C} \otimes \text{Fin}$ and $\mathcal{C} \otimes \text{Fin}^{\text{op}}$?

Answer: Not always!

• • = • • = • = •

Descent: Can $C^{\otimes} \in SymMon_{\infty}$ be reconstructed from $C \otimes Fin$ and $C \otimes Fin^{op}$?

Answer: Not always!

Example 24

 $\mathbb{S} \otimes Fin \cong \mathbb{S} \otimes Fin^{op} \cong 0$, but $\mathbb{S} \not\cong 0$.

何 ト イヨ ト イヨ ト

э

Future work

Example 25

Can operad \mathcal{O} be recovered from $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}$ and $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}^{\mathsf{op}}$?

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

э

Can operad \mathcal{O} be recovered from $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}$ and $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}^{\mathsf{op}}$?

• $\mathsf{Env}(\mathcal{O}) \otimes \mathsf{Fin}^{\mathsf{op}} \cong \mathcal{L}_{\mathcal{O}}$ (Lawvere theory)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Can operad \mathcal{O} be recovered from $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}$ and $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}^{\mathsf{op}}$?

- $\mathsf{Env}(\mathcal{O}) \otimes \mathsf{Fin}^{\mathsf{op}} \cong \mathcal{L}_{\mathcal{O}}$ (Lawvere theory)
- $\bullet \ {\sf Env}({\cal O})\otimes {\sf Fin}\cong {\sf Fin}$

▲ □ ▶ ▲ □ ▶ ▲

Can operad \mathcal{O} be recovered from $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}$ and $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}^{\mathsf{op}}$?

- $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}^{\mathsf{op}}\cong\mathcal{L}_{\mathcal{O}}$ (Lawvere theory)
- $\bullet \ {\sf Env}({\cal O})\otimes {\sf Fin}\cong {\sf Fin}$
- $\mathcal{L}_{\mathcal{O}} \otimes \mathsf{Burn} \cong \mathsf{Burn}$

A ≥ ►

Can operad \mathcal{O} be recovered from $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}$ and $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}^{\mathsf{op}}$?

- $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}^{\mathsf{op}}\cong\mathcal{L}_{\mathcal{O}}$ (Lawvere theory)
- $Env(\mathcal{O}) \otimes Fin \cong Fin$
- $\mathcal{L}_{\mathcal{O}} \otimes \mathsf{Burn} \cong \mathsf{Burn}$

Conjecture

There is an equivalence of $(\infty$ -)categories between unital $(\infty$ -)operads and cyclic Fin^{op}-modules with trivialization over Burn.

Can operad \mathcal{O} be recovered from $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}$ and $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}^{\mathsf{op}}$?

- $\mathsf{Env}(\mathcal{O}) \otimes \mathsf{Fin}^{\mathsf{op}} \cong \mathcal{L}_{\mathcal{O}}$ (Lawvere theory)
- $Env(\mathcal{O}) \otimes Fin \cong Fin$
- $\mathcal{L}_{\mathcal{O}} \otimes \mathsf{Burn} \cong \mathsf{Burn}$

Conjecture

There is an equivalence of $(\infty$ -)categories between unital $(\infty$ -)operads and cyclic Fin^{op}-modules with trivialization over Burn.

Applications:

• earlier conjecture on operadic bialgebras

Can operad \mathcal{O} be recovered from $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}$ and $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}^{\mathsf{op}}$?

- $\mathsf{Env}(\mathcal{O})\otimes\mathsf{Fin}^{\mathsf{op}}\cong\mathcal{L}_{\mathcal{O}}$ (Lawvere theory)
- $Env(\mathcal{O}) \otimes Fin \cong Fin$
- $\mathcal{L}_{\mathcal{O}} \otimes \mathsf{Burn} \cong \mathsf{Burn}$

Conjecture

There is an equivalence of $(\infty$ -)categories between unital $(\infty$ -)operads and cyclic Fin^{op}-modules with trivialization over Burn.

Applications:

- earlier conjecture on operadic bialgebras
- equivariant ∞ -operads