Commutative Algebra of Categories

John D. Berman

University of Virginia

September 22, 2017

John D. Berman Commutative Algebra of Categories



K Theory of categories

C is an (co-)category.

John D. Berman Commutative Algebra of Categories



K Theory of categories

C is an (co-)category.
C*° is an (oo-)groupoid (space).

John D. Berman Commutative Algebra of Categories



K Theory of categories

C is an (co-)category.
C*° is an (oo-)groupoid (space).

C = Fin, C* = Fin*® = [ [, B,

John D. Berman Commutative Algebra of Categories



K Theory of categories

C is an (co-)category.
C*° is an (oo-)groupoid (space).

C = Fin, C** = Fin®® ~ [ [, BZ,

C's° inherits extra structure from C.

John D. Berman Commutative Algebra of Categories



K Theory of categories

C is an (co-)category.
C*° is an (oo-)groupoid (space).

C = Fin, C** = Fin®® ~ [ [, BZ,

C's° inherits extra structure from C.

If C® is symmetric monoidal, C'° inherits Eo.-space structure. \

John D. Berman Commutative Algebra of Categories



K Theory of categories

C is an (co-)category.
C*° is an (oo-)groupoid (space).

C = Fin, C** = Fin®® ~ [ [, BZ,

C's° inherits extra structure from C.

If C® is symmetric monoidal, C'° inherits Eo.-space structure.

[ 1, BX, inherits two E-space structures from 11, x.
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an abelian group.
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K Theory of categories

An Eq-space X is grouplike if the commutative monoid 7o (X) is
an abelian group.

Theorem 4

Q% : Sp — Ky Top determines an equivalence

Eo Topg, = Sp~0.

K(C®) ='group completion’ of the Eq-space C'*° (a spectrum).

John D. Berman Commutative Algebra of Categories



Perfect modules over a ring spectrum: C® = Mod%erf’@

John D. Berman Commutative Algebra of Categories



Perfect modules over a ring spectrum: C® = Mod%erf’@

K(C®) = K(R) (definition of higher algebraic K-theory)

John D. Berman Commutative Algebra of Categories



Example 5

Perfect modules over a ring spectrum: C® = Mod%erf’@

K(C®) = K(R) (definition of higher algebraic K-theory)

Example 6

Finite sets: C® = Fin"

John D. Berman Commutative Algebra of Categories



Example 5

Perfect modules over a ring spectrum: C® = Mod%erf’@
K(C®) = K(R) (definition of higher algebraic K-theory)

Example 6

Finite sets: C® = Fin"
K(CP) =~ S (Barratt-Priddy-Quillen theorem)
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Ring structure

Obstacles to making this precise:
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@ What is ‘group completion’?
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Ring structure

Obstacles to making this precise:
© What is a ‘semiring (co-)category’?
@ What is ‘group completion’?
Traditional answers (70's):
© bipermutative categories
@ Quillen Q construction, Waldhausen S, construction

Alternative: categorify ordinary semirings and group completion!
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abelian group (commutative monoid) A® B.
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Semirings and group completion

© Given abelian groups (commutative monoids) A, B, there is an
abelian group (commutative monoid) A® B.

Ab® (ComMon®) is a symmetric monoidal category.

Monoids in Ab® (ComMon®) are rings (semirings).

© 00

Z (N) is the free abelian group (commutative monoid) on one
generator.

© A commutative monoid is an abelian group if and only if it is
a Z-module.

Q Z ®n — is group completion.
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@ Given symmetric monoidal oco-categories C, D, there is a
symmetric monoidal oo-category C @ D.

@ SymMon® is a (large) symmetric monoidal oo-category.
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Semiring categories

(Gepner-Groth-Nikolaus)

@ Given symmetric monoidal oco-categories C, D, there is a
symmetric monoidal oo-category C @ D.

@ SymMon® is a (large) symmetric monoidal oo-category.

© (Definition) Monoids in SymMon® are semiring oo-categories.

@ Fin®™° is the free symmetric monoidal co-category on one
generator.

Proofs are formal, using higher algebra of presentable co-categories.
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Semiring categories

Examples of commutative semiring co-categories:
@ closed monoidal categories (Set, Top, Vect, Setg)
o categories built via some constructions (Set®?, Set'*®)

@ connective commutative ring spectra (S, KU, HR)
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Group completion

There is a full subcategory inclusion Sp*° < SymMon,,.

Theorem 7 (B.)

o Sp° = Mods (i.e., C® is an S-module iff it is a spectrum).
e S®CP =~ K(CV) ifC is a groupoid.
e Hom(S,C®) =~ Pic(C®).

If C®® not a groupoid but semiadditive (Modg),

K(C®) = S ® Fun®®(Burn[Cob'],C).
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Definition 8
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Cartesian monoidal categories

C® a symmetric monoidal category, or C®® a semiring category.

Definition 8

@ C is cartesian monoidal if @ = x.
@ C is cocartesian monoidal if @ = LL
@ C is semiadditive if @ = x = ILL

Example 9

@ Set is cocartesian monoidal.

@ Set®P is cartesian monoidal.
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Cartesian monoidal categories

C® a symmetric monoidal category, or C®® a semiring category.

Definition 8

@ C is cartesian monoidal if @ = x.
@ C is cocartesian monoidal if @ = LL
@ C is semiadditive if @ = x = ILL

Example 9

@ Set is cocartesian monoidal.
@ Set®P is cartesian monoidal.

@ Ab (or ComMon) is semiadditive.
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Cartesian monoidal categories

Theorem 10 (B.)

e Modf;, = CocartMonCat (C® is a Fin-module iff ® = 11)
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Theorem 10 (B.)

e Modf;, = CocartMonCat (C® is a Fin-module iff ® = 11)
® ModF;,» = CartMonCat
o ModringFine = SemiaddCat

Results are true for categories or co-categories.
Question: What is Fin ® Fin°P?

Theorem 11 (Glasman)

The Burnside category is the free semiadditive category on one
object.
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Cartesian monoidal categories

Theorem 10 (B.)

e Modf;, = CocartMonCat (C® is a Fin-module iff ® = 11)
® ModF;,» = CartMonCat
o ModringFine = SemiaddCat

Results are true for categories or co-categories.
Question: What is Fin ® Fin°P?

Theorem 11 (Glasman)

The Burnside category is the free semiadditive category on one
object.

Fin ® Fin°® >~ Burn
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Modules over semiring categories

Semiring co-category R R-modules
S Spectra
Fin's® Symmetric monoidal
Fin Cocartesian monoidal
Fin°P Cartesian monoidal
Fin'™ Symmetric monoidal with initial unit
Fin'm-op Symmetric monoidal with terminal unit
Fin, Cocartesian monoidal with 0 =1
FingP Cartesian monoidal with 0 = 1
Burn Semiadditive
Burng, Additive
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Algebraic theories

Definition 12

A PROP (PROduct and Permutation category) is a symmetric
monoidal category P® generated by one object under @.
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Algebraic theories

Definition 12

A PROP (PROduct and Permutation category) is a symmetric
monoidal category P® generated by one object under @.

Think: objects labeled by finite sets, @ =11.

Definition 13

A P®-algebra in C® is a symmetric monoidal functor

Algp(C®) = Hom(P®,C®).
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Algebraic theories

Example 14

@ Fin is the PROP for commutative monoids;

John D. Berman Commutative Algebra of Categories



Algebraic theories

Example 14

@ Fin is the PROP for commutative monoids;

@ Fin°P is the PROP for cocommutative comonoids;

John D. Berman Commutative Algebra of Categories



Algebraic theories

Example 14

@ Fin is the PROP for commutative monoids;

@ Fin°P is the PROP for cocommutative comonoids;

@ Burn = Fin ® Fin°P is the PROP for
commutative-cocommutative bimonoids;

John D. Berman Commutative Algebra of Categories



Algebraic theories

Example 14

@ Fin is the PROP for commutative monoids;

@ Fin°P is the PROP for cocommutative comonoids;

@ Burn = Fin ® Fin°P is the PROP for
commutative-cocommutative bimonoids;

@ Burng, is the PROP for Hopf algebras.

John D. Berman Commutative Algebra of Categories



Algebraic theories

Example 14

@ Fin is the PROP for commutative monoids;

@ Fin®P is the PROP for cocommutative comonoids;

o Burn = Fin ® Fin®? is the PROP for
commutative-cocommutative bimonoids;

@ Burngp, is the PROP for Hopf algebras.
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@ Fin is the PROP for commutative monoids;

@ Fin®P is the PROP for cocommutative comonoids;

o Burn = Fin ® Fin®? is the PROP for
commutative-cocommutative bimonoids;

@ Burngp, is the PROP for Hopf algebras.

If PP is cartesian monoidal, P°P < Algy(Top™):
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Algebraic theories

Example 14

@ Fin is the PROP for commutative monoids;

@ Fin®P is the PROP for cocommutative comonoids;

o Burn = Fin ® Fin®? is the PROP for
commutative-cocommutative bimonoids;

@ Burngp, is the PROP for Hopf algebras.

If PP is cartesian monoidal, P°P < Algy(Top™):
Subcategory of finitely generated free objects.

Definition 15

A Lawvere theory is a cartesian monoidal PROP L£*. Algebras are
taken in Set™ (1-categories) or Top™ (co-categories):

Alg, = Alg,(Top™) = Hom (L™, Top™).
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Lawvere theories

Example 16
Lawvere theory Set-algebras Top-algebras
Fin®P Set Top

John D. Berman Commutative Algebra of Categories



Lawvere theories

Example 16
Lawvere theory Set-algebras Top-algebras
Fin®P Set Top
Burn = Span(Fin) Ab Sp=0

John D. Berman Commutative Algebra of Categories
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Example 16
Lawvere theory Set-algebras Top-algebras
Fin®P Set Top
Burn = Span(Fin) Ab Sp=0
Poly = Bispan(Fin) | ComRing | ? (ComRingSp=?)
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Lawvere theories

Example 16
Lawvere theory Set-algebras Top-algebras
Fin®P Set Top
Burn = Span(Fin) Ab Sp="°
Poly = Bispan(Fin) | ComRing | ? (ComRingSp=?)

Theorem 17 (B.)
e A PROP is a cyclic Fin'*°-module.
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Lawvere theories

Example 16
Lawvere theory Set-algebras Top-algebras
Fin®P Set Top
Burn = Span(Fin) Ab Sp="°
Poly = Bispan(Fin) | ComRing | ? (ComRingSp=?)

Theorem 17 (B.)

e A PROP is a cyclic Fin'*°-module.
@ A Lawvere theory is a cyclic Fin°®"-module.
e If P, P" are PROPs/Lawvere theories, so is P ® P'.
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Lawvere theories

Example 16
Lawvere theory Set-algebras Top-algebras
Fin®P Set Top
Burn = Span(Fin) Ab Sp="°
Poly = Bispan(Fin) | ComRing | ? (ComRingSp=?)

Theorem 17 (B.)
e A PROP is a cyclic Fin'*°-module.
@ A Lawvere theory is a cyclic Fin°®"-module.
e If P, P" are PROPs/Lawvere theories, so is P ® P'.
o IfP® is a PROP, the associated Lawvere theory is P® ® Fin°P:

Algp(Top™) = Algpgfinee(Top™).
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Application: equivariant homotopy theory

Definition 18 (B.)

An equivariant Lawvere theory is a cyclic Fing’-module £*.

Alg, = Hom(L*, Top™).

John D. Berman Commutative Algebra of Categories



Application: equivariant homotopy theory

Definition 18 (B.)

An equivariant Lawvere theory is a cyclic Fing’-module £*.

Alg, = Hom(L*, Top™).

Theorem 19 (Elmendorf)

Fingp is the equivariant Lawvere theory for Topg.

John D. Berman Commutative Algebra of Categories
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Definition 18 (B.)

An equivariant Lawvere theory is a cyclic Fing’-module £*.

Alg, = Hom(L*, Top™).

Theorem 19 (Elmendorf)

Fingp is the equivariant Lawvere theory for Topg.

Theorem 20 (Guillou-May)

Burng = Span(Fing) is the equivariant Lawvere theory for Sp?).

John D. Berman Commutative Algebra of Categories



Application: equivariant homotopy theory

Definition 18 (B.)

An equivariant Lawvere theory is a cyclic Fing’-module £*.

Alg, = Hom(L*, Top™).

Theorem 19 (Elmendorf)

Fin%p is the equivariant Lawvere theory for Topg.

Theorem 20 (Guillou-May)

Burng = Span(Fing) is the equivariant Lawvere theory for Sp?).

Poly; = Bispan(Fing) is the equivariant Lawvere theory for
CRingSpio.
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Operad O:
@ given a finite set X, set O(X) of ways to multiply objects of X

John D. Berman Commutative Algebra of Categories



Application: operads

Operad O:
@ given a finite set X, set O(X) of ways to multiply objects of X

@ composition maps

John D. Berman Commutative Algebra of Categories



Application: operads

Operad O:
@ given a finite set X, set O(X) of ways to multiply objects of X
@ composition maps

@ associative

John D. Berman Commutative Algebra of Categories



Application: operads

Operad O:
@ given a finite set X, set O(X) of ways to multiply objects of X
@ composition maps

@ associative

Commutative operad Comm(X) = .
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Application: operads

Symmetric monoidal category Env(O)":

@ Objects are finite sets.
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Application: operads

Symmetric monoidal category Env(O)":
@ Objects are finite sets.

@ Morphism X — Y is a way to turn X into Y using operations
in O.

@ Symmetric monoidal operation is 1I.
Env(O)" is a PROP; algebras are O-algebras

Hom(Env(O)",C®) =~ Alg,(C®).
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Application: operads

Symmetric monoidal category Env(O)":
@ Objects are finite sets.

@ Morphism X — Y is a way to turn X into Y using operations
in O.

@ Symmetric monoidal operation is 1I.
Env(O)" is a PROP; algebras are O-algebras

Hom(Env(O)",C®) =~ Alg,(C®).

Env(Comm)" = Fin".
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Applications: operads

Operads PROPs Lawvere Theories
(@) Env(O) Env(O) ® Fin°?
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Given an operad O, Env(O) ® Fin°P is:

@ the Lawvere theory associated to O;
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Applications: operads

Operads PROPs Lawvere Theories
(@) Env(O) Env(O) ® Fin°?

Given an operad O, Env(O) ® Fin°P is:
@ the Lawvere theory associated to O;
@ the PROP for O — Comm-— bialgebras;
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Applications: operads

Operads PROPs Lawvere Theories
(@) Env(O) Env(O) ® Fin°?

Given an operad O, Env(O) ® Fin°P is:
@ the Lawvere theory associated to O;
@ the PROP for O — Comm-— bialgebras;

@ an explicit span construction.
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Applications: operads

Operads PROPs Lawvere Theories
— —
(@) Env(O) Env(O) ® Fin°?
Theorem 23
Given an operad O, Env(O) ® Fin°P is:
@ the Lawvere theory associated to O;

@ the PROP for O — Comm-— bialgebras;

@ an explicit span construction.

The PROP for O — (O’ —bialgebras can be computed via a span
construction.
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Push/pull square of rings:

Fin'*> —— Fin

L

Fin°® —— Burn
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Push/pull square of rings:

—XFi
SymMon,, —®n CocartMong,
®Fin°Pl \L—@Burn

CartMony, —— SemiaddCaty,
—®Burn
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Push/pull square of rings:

Fin'*> —— Fin

L

Fin°® —— Burn

Descent: Can C® e SymMon,, be reconstructed from C ® Fin and
C ® Fin°P?
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Push/pull square of rings:

Fin'*> —— Fin

L

Fin°® —— Burn
Descent: Can C® e SymMon,, be reconstructed from C ® Fin and

C ® Fin°P?
Answer: Not always!
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Push/pull square of rings:

Fin'*® —— Fin

L

Fin°® —— Burn

Descent: Can C® e SymMon,, be reconstructed from C ® Fin and
C ® Fin°P?

Answer: Not always!

Example 24

S®Fin =2 S® Fin®® =~ 0, but S £ 0.
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Can operad O be recovered from Env(O) ® Fin and
Env(O) ® Fin°P?
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Env(O) ® Fin°P?

e Env(O) ® Fin®® = Lo (Lawvere theory)
e Env(O) ®Fin = Fin
o Lo ® Burn = Burn

John D. Berman Commutative Algebra of Categories



Can operad O be recovered from Env(O) ® Fin and
Env(O) ® Fin°P?

e Env(O) ® Fin®® = Lo (Lawvere theory)
e Env(O) ®Fin = Fin
o Lo ® Burn = Burn

There is an equivalence of (oo-)categories between unital
(co-)operads and cyclic Fin°®-modules with trivialization over Burn.
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e Env(O) ® Fin®® = Lo (Lawvere theory)
e Env(O) ®Fin = Fin
o Lo ® Burn = Burn

There is an equivalence of (oo-)categories between unital
(co-)operads and cyclic Fin°®-modules with trivialization over Burn.

Applications:
@ earlier conjecture on operadic bialgebras
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Can operad O be recovered from Env(O) ® Fin and
Env(O) ® Fin°P?

e Env(O) ® Fin®® = Lo (Lawvere theory)
e Env(O) ®Fin = Fin
o Lo ® Burn = Burn

There is an equivalence of (oo-)categories between unital
(co-)operads and cyclic Fin°®-modules with trivialization over Burn.

Applications:
@ earlier conjecture on operadic bialgebras

@ equivariant co-operads
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